Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children

Berthold Koletzko, Eva Lattka, Sonja Zeilinger, Thomas Illig, and Colin Steer

Authors from the Department of Pediatrics, Dr von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany (BK), the Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany (EL, SZ, and TI), and the Centre for Child and Adolescent Health, Department of Community Based Medicine, University of Bristol, Bristol, United Kingdom (CS).


Background: Blood and tissue long-chain polyunsaturated fatty acid (LC-PUFA) amounts, which have been associated with early development and lifelong health, depend on dietary intake and endogenous conversion of precursor fatty acids (FAs) by the enzymes Δ5-desaturase and Δ6-desaturase. Polymorphisms in the desaturase encoding genes FADS1 and FADS2 have been associated with several n26 (omega-6) and n23 (omega-3) FAs and especially with arachidonic acid (AA) amounts. Associations with docosahexaenoic acid (DHA), which is considered particularly important for brain and retina development, are hardly existent.

Objective: We explored the relation between FADS gene cluster polymorphisms and red blood cell (RBC) FA amounts in 4000 pregnant women participating in the Avon Longitudinal Study of Parents and Children.

Design: Linear regression analysis of 17 single nucleotide polymorphisms (SNPs) in the FADS gene cluster was conducted with RBC phospholipid FAs from 6711 samples from 4457 women obtained throughout pregnancy (mean 6 SD gestational age: 26.8 6 8.2 wk).

Results: Independent of dietary effects, the minor alleles were consistently positively associated with precursor FAs and negatively associated with LC-PUFAs and product:substrate ratios of the n26 (AA:linoleic acid ratio) and n23 (eicosapentaenoic acid:α-linolenic acid ratio) pathways. In contrast to previous studies, we also showed significant inverse associations with DHA. Similar but weaker associations were shown for the FADS3 SNP rs174455.

Conclusions: FADS genotypes influence DHA amounts in maternal RBC phospholipids and might affect the child’s DHA supply during pregnancy. It is highly likely that a gene product of FADS3 has a desaturating activity.

Address correspondence to: B Koletzko, E-mail: office.koletzko@med.uni-muenchen.de